Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Pengelompokan Status Pasien Covid-19 Menggunakan Metode K-Means Clustering 
(Studi Kasus: Rsud Arifin Achmad Provinsi Riau)
Penanda Bagikan

CD Skripsi

Pengelompokan Status Pasien Covid-19 Menggunakan Metode K-Means Clustering (Studi Kasus: Rsud Arifin Achmad Provinsi Riau)

IKHSANUL FAHMY HAZIR / 1703111035 - Nama Orang;

ABSTRACT
Corona viruses (CoV) are part of a family of viruses that cause illness ranging from the flu to more severe diseases such as Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV). The disease caused by the corona virus, also known as COVID-19. Many research have been done to build a clustering system especially on health department, in particular for COVID-19 study. This research aims to cluster COVID-19 patients so that patients get the right treatment, it can also be an illustration for the medical side of COVID-19 patients treated from April to June 2021 at the Arifin Achmad Hospital, Riau Province and measure the level of accuracy of the method used. This study uses the K-Means Clustering method in grouping data and uses the Silhouette Coefficient to see how good the quality of the resulting cluster is. The stages in this research are data preparation, data preprocessing, clustering process with K-Means, testing clustering results using Silhouette Coefficient and concluding the results Based on the results of the study, that grouping the status of COVID-19 patients using 20 variables and conduct experiments on 2nd to 5th cluster has a best Silhouette Coefficient value on 3rd cluster which is 0,166408759, where 1st cluster dominated by patients with moderate clinical classification degree, 2nd cluster dominated by patients with mild clinical classification degree, and 3rd cluster dominated by patients with critical clinical classification degree. Based on Silhouette Coefficient obtained so clustering COVID-19 patient data with 500 patient using K-Means Clustering method did not achieve satisfactory results because it is included in the no structure group.
Keywords: Data Mining, COVID-19, K-Means Clustering, Python, Silhouette Coefficient.


Ketersediaan
#
Perpustakaan Universitas Riau 1703111035
1703111035
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1703111035
Penerbit
Pekanbaru : Universitas Riau - FMIPA - Sistem Informasi., 2022
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1703111035
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Deti
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?