Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Perancangan Dan Implementasi Self-Checkout System Pada Toko Ritel Menggunakan Convolutional Neural Network (Cnn)
Penanda Bagikan

CD Skripsi

Perancangan Dan Implementasi Self-Checkout System Pada Toko Ritel Menggunakan Convolutional Neural Network (Cnn)

Rahma Adi Putra / 1807124728 - Nama Orang;

ABSTRACT
The payment system at retail stores today generally still uses the traditional cashier system. The cashier must scan the barcodes one by one on each grocery product, so other consumers will have to wait quite a long time if there is only one cashier available. Currently, the self-checkout system method has begun to be developed. Self-checkout system is a facility that allows consumers to make payments and pack their own groceries without the help of a cashier. The system is more efficient than traditional cashiers since it is not operated by workers. The design of this self-checkout system uses the convolutional neural network (CNN) method as an image data processor. The MobileNetV2 model architecture from CNN was chosen because it has a high accuracy value and a low number of computations. Hamming loss method is used to evaluate and to determine the performance of the model made in the Multi-label classification type. The results of the model that has been trained will be implemented in the GUI as a user interface. 247 images with image resolution of 224 x 224 pixels from the products: Teh Botol, Indomie, and Chitato is used as the dataset. The results of the training model in this study obtained an accuracy value of 88.8%. The hamming loss value gets a loss of 0.12%. Processing time on the GUI system to detect grocery products on average takes 1 second. The placement position of each product must be spaced, because it greatly affects the detection results.
Keywords : Self-Checkout System, Convolutional neural network, MobileNetV2


Ketersediaan
#
Perpustakaan Universitas Riau 1807124728
1807124728
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1807124728
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Elektro., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1807124728
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?