Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Sistem Pendeteksi Pengguna Helm Di Dalam Atm Dengan Metode Deep Learning Berbasis Raspberry Pi 4
Penanda Bagikan

CD Skripsi

Sistem Pendeteksi Pengguna Helm Di Dalam Atm Dengan Metode Deep Learning Berbasis Raspberry Pi 4

Juliani /1807111363 - Nama Orang;

ABSTRACT
Crime is all kinds of activities carried out by the whole community because it violates the law, social and religion and harms many parties. One of the crimes that often occurs is a crime related to an ATM (Automatic Teller Machine). Perpetrators who enter ATMs usually carry out their actions using head coverings such as helmets, hats, skullcaps and others in committing crimes. To minimize the occurrence of criminal acts that occur at ATMs, this study aims to detect head coverings that are worn when entering an ATM. This object detection system uses a Raspberry Pi 4 mini computer board as a controller, a Pi camera as a sensor to detect objects, speakers to provide information in the form of alarms and telegram bots to receive image messages with detected objects. The method used in this study is YOLO (You Only Look Once) which is an algorithm used for direct object detection. YOLO works by looking at the entire image once, then the neural network immediately detects existing objects. This system consists of three main processes, namely the pre-processing process, the training process and the detection process. The pre-processing process is resizing and labeling annotations on the image dataset, then the training process on the dataset using YOLOv3. In the detection process, this system performs localization and classification with a single step process so that the result of this detection process is a person wearing a helmet. From the results of testing this system it was stated that the system was able to detect with a fairly high accuracy of 96%.
Keywords: Crime, Headgear, ATM (Automated Teller Machine), Raspberry Pi 4, YOLO (You Only Look Once).


Ketersediaan
#
Perpustakaan Universitas Riau 1807111363
1807111363
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1807111363
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Informatika., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1807111363
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?