Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Indoor Localization Pada Internet Of Things (Iot) Berbasis Fingerprinting Lora (Menggunaan Metodedeep Neural Network (Dnn)
Penanda Bagikan

CD Skripsi

Indoor Localization Pada Internet Of Things (Iot) Berbasis Fingerprinting Lora (Menggunaan Metodedeep Neural Network (Dnn)

VICTOR HAMBALI / 1707114355 - Nama Orang;

ABSTRACT
LoRa technology has received a lot of attention in recent years. There are many success stories about using LoRa technology for the Internet of Things in various implementations. Several studies have found that the use of LoRa technology has the opportunity to be implemented in indoor-based applications. LoRa technology was found to be more stable and more resistant to environmental changes. The Global Positioning System (GPS) method cannot be declared as a perfect tool because this tool still has drawbacks when in a building or building, the level of accuracy and precision of the Global Positioning System (GPS) will decrease and it will not work optimally when the user located right in a building or building. Object position is one of the information needed by applications in the Internet of Things (IoT), position accuracy in a closed room is largely determined by the position tracking device used. Fingerprinting is a localization technique used for positioning based on measurement data of RSSI LoRa values at several Anchor node points. Positioning is based on the Fingerprinting database as a feature which contains RSS values representing each position in the room. All of these features are used to train models on the Deep Neural Network method which uses fingerprinting data from RSSI LoRa devices on Indoor Localization. Based on the results of model testing and position prediction testing, there is the highest model accuracy with an accuracy of 82% with a total of 250 epochs and 400 neurons, then the model is used as a reference for predicting 53 positions with an average accuracy of 92%.
Keywords: IoT, Indoor Localization, LoRa, RSSI Fingerprinting, DNN


Ketersediaan
#
Perpustakaan Universitas Riau 1707114355
1707114355
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1707114355
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Informatika., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1707114355
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • LAMPIRAN
  • DAFTAR PUSTAKA
  • BAB V KESIMPULAN DAN SARAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB III METODE PENELITIAN
  • BAB II TINJAUAN PUSTAKA
  • BAB I PENDAHULUAN
  • ABSTRAK
  • DAFTAR ISI
  • COVER
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?