Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Klasifikasi Gambar Makanan Pada Aplikasi Berbagi Makanan Menggunakan Metode Deep Learning
Penanda Bagikan

CD Skripsi

Klasifikasi Gambar Makanan Pada Aplikasi Berbagi Makanan Menggunakan Metode Deep Learning

Cindy Safitri / 1807113673 - Nama Orang;

ABSTRACT
Food waste in the world has become a very big issue in various countries. According to the Food and Agricultural Organization (FAO), 1.3 billion tons of edible food annually is wasted. The Food and Agricultural Organization (FAO) said that Indonesia is in second place as the world's largest producer of food waste, namely 300 kg per person per year. At the same time, Indonesia is included in the moderate category on the global hunger index and is ranked 73 out of 116 countries in 2021. To overcome this problem an application is needed that functions as a link between people who want to share their leftover food and people who need food. In making a sharing food application, it is inseparable from making a backend and frontend. On the frontend, a user interface is made that is useful for users to interact with the system. In the backend of this food sharing application, a food image classification is made which can detect images in the form of food images and non-food images. This Food Image Classification was created using the Deep Learning method with the Convolutional Neural Network (CNN) algorithm and the ResNet-50 Architecture. To know the performance of the model. To find out the performance of the model, it is necessary to test it using the Confusion Matrix, which calculates accuracy, precision and recall. The results of this study obtained an accuracy of 97%, 99% precision, 96% recall and 97% F1-Score. To obtain accuracy, precision, recall, and F1-Score values obtained by measuring using testing data with the ResNet 50 architecture that has been trained.
Keywords : Deep learning, CNN, ResNet 50, Food Waste, Image Classification


Ketersediaan
#
Perpustakaan Universitas Riau 1807113673
1807113673
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1807113673
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Informatika., 2022
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1807113673
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?