Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Penerapan Algoritma Apriori Untuk Data Mining Pada Data Transaksi Penjualan Toko Angkasa Mart
Penanda Bagikan

CD Skripsi

Penerapan Algoritma Apriori Untuk Data Mining Pada Data Transaksi Penjualan Toko Angkasa Mart

Hana Bernika Sabila /1907111436 - Nama Orang;

ABSTRACT
Data Mining is a method of extracting information that has the potential to reveal new insights from previously unknown data. In this context, Angkasa Mart Store faces the challenge of declining sales for underperforming products. To address this issue, the store employs a data mining approach by implementing the Apriori algorithm, which is also known as association rules. The adopted solution to tackle the sales problem of underperforming products is the creation of bundled packages that combine the less popular items with popular product combinations based on the generated association rules. The research methodology utilized in this study is CRISP-DM (Cross-Industry Standard Process for Data Mining), providing a structured framework for data analysis. The sales transaction data used encompasses the period from June to July 2022, involving a total of 65,892 purchased items. After data processing, 10 useful association rules are derived as products for the bundled packages. The research findings yield two recommendations for package bundle composition. The first recommendation involves two suggestions for bundling products that are mutually relevant. These recommendations are obtained through the conducted data mining analysis and have received positive feedback from the store. Additionally, the second recommendation consists of 21 bundled packages comprising irrelevant products. Despite lacking a strong relationship between the items, these recommendations are also considered effective in the context of sales strategy development.
Keywords: Data Mining, Apriori Algorithm, Bundle, Association Rule


Ketersediaan
#
Perpustakaan Universitas Riau 1907111436
1907111436
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1907111436
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Informatika., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1907111436
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II LANDASAN TEORI
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?