Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Pengenalan Alfabet Sibi Menggunakan Convolutional Neural Network Sebagai Media Pembelajaran Bagi Masyarakat Umum
Penanda Bagikan

CD Skripsi

Pengenalan Alfabet Sibi Menggunakan Convolutional Neural Network Sebagai Media Pembelajaran Bagi Masyarakat Umum

Zahrah Fadhilah / 1907111410 - Nama Orang;

ABSTRACT
SIBI is a Sign Language developed by hearing people and adapted from American Sign
Language (ASL). SIBI has been established by the government through the Decree of
the Minister of Education and Culture of the Republic of Indonesia Number
0161/U/1994 and is used in SLB in Indonesia. The difficulty of communication between
deaf and hard of hearing people and the general public causes limited social
interaction between people with disabilities and the general public. The initial step that
will be taken for the introduction of Sign Language to the community by creating a
learning tool as an introduction to learning Sign Language by introducing the SIBI
alphabet. One method that can be developed to bridge these problems is Deep
Learning. Deep Learning is a branch of Machine Learning that has excellent
performance. The most commonly used class of Deep Learning algorithms for spatial
pattern recognition analysis is Convolutional Neural Networks. This study used CNN
to train the SIBI alphabet image and managed to get the best accuracy of 87.62% for
training accuracy and 92.07% validation accuracy. Testing using confusion matrix got
an accuracy of 92.9%. The architecture that gets the best accuracy in this study
consists of four Convolution Layer, four Pooling Layer and Fully Connecter Layer.
Based on this research, it is concluded that the model successfully recognizes the SBI
alphabet image well and gets the best accuracy in Phase V trials at the 50th training.
Keywords: Sign Language, SIBI, CNN


Ketersediaan
#
Perpustakaan Universitas Riau 1907111410
1907111410
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1907111410
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Informatika., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1907111410
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?