Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Deteksi COVID-19 Berdasarkan Citra Sintetis Chest X-Ray (CXR) Menggunakan Deep Convolutional Generative Adversarial Networks (DCGAN) Dan Transfer Learning
Penanda Bagikan

CD Skripsi

Deteksi COVID-19 Berdasarkan Citra Sintetis Chest X-Ray (CXR) Menggunakan Deep Convolutional Generative Adversarial Networks (DCGAN) Dan Transfer Learning

Dandi Septiandi / 1907112680 - Nama Orang;

ABSTRACT
The global COVID-19 pandemic has had a significant impact on the health and lives of many people worldwide, with a high number of cases and fatalities. The need for rapid and accurate diagnosis is crucial. The use of radiographic imaging, particularly chest radiography (CXR), has been considered for the diagnosis of suspected COVID-19 patients. However, the limited availability of CXR data poses a challenge in developing accurate detection models. In this study, a larger dataset was generated using Deep Convolutional Generative Adversarial Networks (DGAN). The Expanded Dataset consists of 34.63% original images and 65.37% synthetic images, which were then used to train three pre-trained models: ResNet50, EfficientNetV1, and EfficientNetV2. The results of the study showed that the use of synthetic CXR images generated by DCGAN was able to improve the performance of the models, achieving high detection accuracy. Specifically, the EfficientNetV1 model achieved the highest accuracy of 99.21% with only ten epochs and a training time of 13.23 minutes, compared to a previous accuracy of 98.43%.
Keywords: COVID-19, transfer learning, Deep Convolutional Generative Adversarial Networks (DCGAN), CXR image, detection.


Ketersediaan
#
Perpustakaan Universitas Riau 1907112680
1907112680
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1907112680
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Elektro., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1907112680
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?