Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Klasifikasi Jenis Dan Kematangan Pisang Menggunakan Metode Convolutional Neural Network (Cnn)
Penanda Bagikan

CD Skripsi

Klasifikasi Jenis Dan Kematangan Pisang Menggunakan Metode Convolutional Neural Network (Cnn)

NABILAH SALSABILA / 1707123199 - Nama Orang;

ABSTRACT
Indonesia has the potential to produce bananas. All of this can be seen from the increasing number of banana production in Indonesia. Although in Indonesia currently produces a lot of bananas, the processing and production of bananas is not balanced. In the process of processing bananas have several stages before the resulting product reaches the consumer. One of these stages is the selection of the type of banana that suits the needs to be processed. This banana selection process is useful for sorting bananas based on their type. In general, farmers or banana billets in distinguishing the types of bananas by looking at the size and color of the banana peel only. This causes frequent errors in choosing the type of banana, which is because of differences of opinion in determining the type of banana based on the shape, color, and size of the banana. The Convolutional Neural Network (CNN) method is generally very good for the classification of the type and maturity of this banana. It is proven by the results of accuracy in the training process of 98% and the results of model testing accuracy in the type classification system are 75% based on confusion matrix calculations.
Keywords: Banana, Deep learning, CNN


Ketersediaan
#
Perpustakaan Universitas Riau 1707123199
1707123199
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1707123199
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Informatika., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1707123199
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?