Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode Cnn
Penanda Bagikan

CD Skripsi

Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode Cnn

Ummi Sri Rahmadhani / 1907113779 - Nama Orang;

ABSTRACT
Mushrooms are plants that do not have true roots and leaves. There are
many types of mushrooms that have been identified worldwide, with various
shapes, sizes, and colors. Mushrooms have many benefits in the fields of economy,
health, and others. One of the benefits of mushrooms is as a food source in
Indonesia, but not all types can be consumed. To identify mushroom species, the
concepts of Genus and species can be used. The concept of Genus is considered
easier because it groups mushroom types based on similar morphological
characteristics. Therefore, a model is needed to classify mushrooms based on
consumable and toxic genera. The method used in this research is Convolution
Neural Network (CNN) due to its good predictive results in image recognition.
The model in the research utilizes three convolution layers, three MaxPooling
layers, and two dropout layers. The use of dropout aims to reduce overfitting in
the model. The research uses a dataset of 1200 images with a training and testing
data ratio of 70:30, resulting in 840 training data and 360 testing data. The best
accuracy achieved by this model is 89% for training and 82% for validation.
Therefore, it can be concluded that the model is able to classify mushrooms based
on Genus using the CNN method.
Keyword : Mushroom, Genus, CNN, Edible, Toxic


Ketersediaan
#
Perpustakaan Universitas Riau 1907113779
1907113779
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1907113779
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Informatika., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1907113779
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II LANDASAN TEORI
  • BAB III METODE PENELITIAN
  • BAB IV PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?