Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Klasifikasi Jenis Rempah-Rempah Menggunakan Metode Convolutional Neural Network
Penanda Bagikan

CD Skripsi

Klasifikasi Jenis Rempah-Rempah Menggunakan Metode Convolutional Neural Network

Chairun Nisa / 1907124638 - Nama Orang;

Spices represent a natural wealth in Indonesia that must be preserved. Distinguishing between various types of spices poses a significant challenge for some individuals due to their visual similarities. The processing of packaged spices, minimal direct involvement in their processing, and a lifestyle inclined towards consuming fast food are factors contributing to a lack of knowledge regarding the authentic forms of spices. Despite traditional spice recognition through guidance from books, the internet, or an expert, the limited comprehensive knowledge of each spice's characteristics results in difficulties for the community in identification. To address this issue, a system is required to assist in identifying types of rhizomes, one of which involves employing Convolutional Neural Network methods through image processing technology. This method represents a deep learning technique proven to be effective in classifying types of rhizomes based on their visual features, offering a modern and easily accessible solution for spice recognition. The image dataset is categorized into four classes, with each class comprising 250 images for a total of 1000 images. The network architecture utilized in the model consists of four convolutional layers. Test results demonstrate that the model excels in image classification, achieving the highest test accuracy value of 90%.

Keywords: Classification, Convolutional Neural Network, Image Processing, Rhizome, Spices.


Ketersediaan
#
Perpustakaan Universitas Riau 1907124638
1907124638
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1907124638
Penerbit
Pekanbaru : Universitas Riau - F. Teknik - Teknik Elektro., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1907124638
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Vina
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?