Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of SISTEM PENDETEKSI KELENGKAPAN PEKERJA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK UNTUK KESELAMATAN BEKERJA
Penanda Bagikan

CD Skripsi

SISTEM PENDETEKSI KELENGKAPAN PEKERJA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK UNTUK KESELAMATAN BEKERJA

Muhammad Leonza Norisevick / 2007126282 - Nama Orang;

Occupational safety in the work environment is a crucial aspect, underlying the
responsibility of every individual in an organization. The fulfillment of work safety
standards has a significant impact on the achievement of the desired targets by an
agency. Conversely, the unavailability of work safety can lead to risks, such as work
accidents, inability to achieve targets, and even unwanted financial losses.
Personal Protective Equipment (PPE) is the main point in maintaining work safety.
Each type of PPE, such as helmets, vests and shoes, has a designation according to
the position of the worker. OHS supervisors directly check the completeness of
workers' PPE in the field, but this manual method can be inefficient and timeconsuming. Therefore, the use of AI technology is a smart solution. The developed
system will detect workers' PPE using a camera. The system will provide a voice to
confirm the completeness of PPE, providing a warning if detected incomplete. AI
technology, especially Machine Learning with a Deep Learning approach, is used
to recognize PPE with the help of a Convolutional Neural Network (CNN). The
application of Computer Vision object detection techniques, such as You Only Look
Once (YOLO), enables real-time object detection. This research uses the Research
and Development (R&D) method which involves a number of systematic steps to
develop a worker equipment detection system based on the Convolutional Neural
Network method using the YOLOv8 algorithm. The detection results are carried out
in two ways, namely image input and in real time. With a high accuracy value, the
system can detect workers' helmets, vests, and shoes with an accuracy of 0.971,
recall of 0.956, and F1 calculation of 96%. This system will later use Arduino to
create an open and closed plank process where if the apd is complete then the plank
will be open and if not the plank is still closed. According to the test, the confidence
of the detection result reaches 90% and at least 60% or more, which shows good
performance. Suggestions for this research are to increase the dataset in the image
and use the latest version of yolo so that the detection results become more accurate
and the results become better.
Keywords: YOLOv8, Convolutional Neural Network, Pengujian Real-time


Ketersediaan
#
Perpustakaan Universitas Riau 2007126282
2007126282
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2007126282
Penerbit
Pekanbaru : Universitas Riau - F. Teknik - Teknik Elektro., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2007126282
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
GUNTUR
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODOLOGI PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?