Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Klasifikasi Target Layanan Pelanggan Menggunakan Convolutional Neural Network Di Pt. Telkom Indonesia Tbk. Witel Riau
Penanda Bagikan

CD Skripsi

Klasifikasi Target Layanan Pelanggan Menggunakan Convolutional Neural Network Di Pt. Telkom Indonesia Tbk. Witel Riau

Najmi Fadhila Atsari / 2103110233 - Nama Orang;

IndiHome and IndiBiz faced challenges in customizing service offerings. Inappropriate marketing strategies lead to missed sales targets and the increasing amount of data makes manual monitoring ineffective. In the face of these challenges, advances in Deep Learning technology support the automation of various computer vision tasks, including recognizing digital objects. This research applies Convolutional Neural Network (CNN) model and MobileNetV2 architecture for building image classification. The dataset consists of 882 images categorized into two classes and divided into three parts, 60% for training, 20% for validation, and 20% for testing. Optimization is done based on batch size and learning rate to improve model performance. The best results were obtained at batch size 32 and learning rate 0.0001 on MobileNetV2 architecture. This model shows superior performance, with test results using testing data showing an accuracy value of 92.05%, as well as precision, recall, and f1-score values of 91.46% each. The performance of the model is measured based on the confusion matrix on the testing data. The results show that false positives and false negatives in both classes have low error rates, so they do not significantly affect the overall performance of the model. Thus, the MobileNetV2 architecture is proven to optimally support digital object recognition automation.

Keywords: Convolutional Neural Network, IndiBiz, IndiHome, Internet Service Provider, MobileNetV2.


Ketersediaan
#
Perpustakaan Universitas Riau 2103110233
2103110233
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2103110233
Penerbit
Pekanbaru : Universitas Riau FMIPA Sistem Informasi., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2103110233
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?