Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Penerapan Algoritma Faster R-Cnn Dalam Sistem Deteksi Karies Gigi Pada Citra X-Ray
Penanda Bagikan

CD Skripsi

Penerapan Algoritma Faster R-Cnn Dalam Sistem Deteksi Karies Gigi Pada Citra X-Ray

Gilang Kurnia Mandari / 2107125642 - Nama Orang;

ABSTRACT
Manual Manual dental caries detection using X-ray images has limitations related to time, subjectivity, and the potential for interpretation errors, especially in early-stage caries cases. This research aims to evaluate and compare various configurations of the Faster R-CNN algorithm to identify the most accurate automatic dental caries detection system for panoramic X-ray images. An experimental research method was employed, where several Faster R-CNN models with a ResNet-50 and FPN backbone were designed and tested by manipulating variables such as the CBAM attention module, a custom AnchorGenerator, and CustomRoIHeads with Focal Loss. Training results over 20 epochs showed a best validation mAP performance of 0.9094. Evaluation on an independent test set yielded a Test mAP of 0.8382, Test Precision of 0.6396, and Test Recall of 0.7585. Testing on 25 test data samples showed a Precision of 83.93%, Recall of 88.68%, and an F1 Score of 86.24%. The best-performing model was implemented in a Graphical User Interface (GUI), “Dental Decay Detection Studio,” using Gradio to facilitate its use by dentists. The experimental results indicate that a specific Faster R-CNN configuration can build a promising dental caries detection system, potentially enhancing clinical diagnostic accuracy and serving as an effective auxiliary tool for medical practitioners.
Keywords: Dental Caries Detection, Faster R-CNN, Panoramic X-ray Images, Deep Learning, Artificial Intelligence


Ketersediaan
#
Perpustakaan Universitas Riau 2107125642
2107125642
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2107125642
Penerbit
Pekanbaru : Universitas Riau – F.TEKNIK – INFORMATIKA., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2107125642
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK INFORMATIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
daus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODOLOGI PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?