Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Komparasi Model Peramalan Debit Sungai  Menggunakan Ann – Som Ann Pada Sub Das  Tapung Kiri
Penanda Bagikan

CD Tesis

Komparasi Model Peramalan Debit Sungai Menggunakan Ann – Som Ann Pada Sub Das Tapung Kiri

MUKHELNALIS SUTAZRIL / 1710246319 - Nama Orang;

Tapung Kiri Sub river Basin is part of siak river basin which is categorized as a critical basin river and a flood prone area. The potential for flooding is caused by high rainfall in the middle, upstream and along basin river that have undergone land use changes. So it is necessary to do debit forecasting to find out when floods will occur in the future.
There have been many hydrological models that have been developed for this discharge prediction using both physical and softcomputing models. One of the softcomputing models that have received attention in hydrological modeling recently is the Artificial Neural Network model. The backpropagation algorithm is an algorithm commonly used in the ANN method to solve problems related to forecasting. However, the drawback of this algorithm is the determination of the initial random weight so that the network training is not optimal, so the Self Organizing Map is used so that the result obtained are more optimal.
This research is expected to provide an overview of which method has more advantages for use as an early warning system.The result showed that the SOM-ANN method had a correlation coefficient of 0,987, better than the ANN method which has a coefficient value of 0,897 in the network formation and modeling process. The use of the SOM – ANN method is more stable than the ANN method because in the SOM – ANN method the data comes from the source ( AWLR ) in the cluster first so that the data pattern becomes good for training, testing and validation.
Keywords : Artificial Neural Network, correlation coefficient, discharge forecasting, Self Organizing Map


Ketersediaan
#
Perpustakaan Universitas Riau 10 12. 220 (0040)
10 12. 220 (0040)
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
10 12. 220 (0040)
Penerbit
Pekanbaru : Universitas Riau – Pascasarjana – Tesis Teknik Sipil., 2020
Deskripsi Fisik
xiii, 102 hlm.: ill.: 29 cm
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
10 12. 220 (0040)
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK SIPIL
Info Detail Spesifik
-
Pernyataan Tanggungjawab
FATAH
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?