Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Implementasi Deep Learning Image Recognition Untuk Deteksi Penyakit Kulit Pada Manusia Menggunakan Convolutional Neural Network (Cnn)
Penanda Bagikan

CD Skripsi

Implementasi Deep Learning Image Recognition Untuk Deteksi Penyakit Kulit Pada Manusia Menggunakan Convolutional Neural Network (Cnn)

Muhammad Devin Jonatila/2003113241 - Nama Orang;

Skin disease is the worldwide most common health problem, especially in Indonesia. Globally, there are over 200 million people affected by one form of skin disease, with a majority occurring in developing countries with hot tropical climates. In Indonesia, skin diseases placed on rank third among the top ten diseases in the outpatient category. Diagnosis of skin diseases can often be harder for laypersons and sometimes requires a long wait for accurate results. This research proposes the use of Convolutional Neural Network (CNN) algorithms for skin disease detection, which can aid in faster and more accurate diagnosis, so can get timely treatment and management. CNN is implemented using a diverse dataset of skin disease images, preprocessing steps to enhance image quality, training and testing processes, and periodic model evaluation. Evaluation is performed by measuring accuracy, precision, recall, and F1-score, as well as observing graphs of training results and the confusion matrix. The results obtained in this study show that the CNN model performs optimally using 1000 skin disease image datasets with 4 disease categories, a pre-trained VGG19 model, 2 additional layers using transfer learning approach, achieving an accuracy of 98%, precision of 98%, recall of 98%, and an F1-score of 98%. In conclusion, the research successfully maximized the CNN model into its best performance.


Ketersediaan
#
Perpustakaan Universitas Riau 2003113241
2003113241
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2003113241
Penerbit
Pekanbaru : Universitas Riau FMIPA Sistem Informasi., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2003113241
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
ERA
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • HALAMAN JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
  • BAB IV HASIL DAN PEMBAHASAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?