Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Implementasi Algoritma Cnn-Bilstm Untuk Memprediksi Curah Hujan Sebagai Pertimbangan Masa Penanaman Cabai
Penanda Bagikan

CD Skripsi

Implementasi Algoritma Cnn-Bilstm Untuk Memprediksi Curah Hujan Sebagai Pertimbangan Masa Penanaman Cabai

Nasywa Anindya Putri / 2107135424 - Nama Orang;

ABSTRACT
The fluctuating rainfall pattern in Pekanbaru poses a challenge in determining the optimal planting time for red chili cultivation. Reliance on traditional planting calendars often increases the risk of crop failure since it does not account for climate variability. This study develops a daily rainfall prediction model using the CNN–BiLSTM architecture with BMKG weather data from January 2014 to June 2025. The dataset was processed through interpolation, time-series transformation, moving averages, and normalization, while hyperparameters were optimized using Bayesian Optimization. The evaluation results show RMSE of 15.97 mm and MAE of 10.40 mm in Pekanbaru, indicating that the model achieves reasonably good accuracy. The 2025 prediction estimates the onset of the rainy season in January (first dekad) and the onset of the dry season in July (first dekad), consistent with BMKG forecasts. Recommended planting schedules for chili are January–February for the first planting season and November–December for the second. External validation in Malang, East Java, produced RMSE of 11.76 mm and MAE of 6.01 mm, suggesting that the model performs better in regions with distinct monsoonal rainfall patterns. These findings highlight the applicability of CNN–BiLSTM as a data-driven approach to support climate-based agricultural planning.
Keywords : CNN–BiLSTM, red chili, Pekanbaru, rainfall prediction, planting time


Ketersediaan
#
Perpustakaan Universitas Riau 2107135424
2107135424
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2107135424
Penerbit
Pekanbaru : Universitas Riau – F.TEKNIK – INFORMATIKA., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2107135424
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK INFORMATIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
daus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODOLOGI PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?