CD Skripsi
Metode Iterasi Tiga Langkah Dengan Orde Konvergensi Enam Untuk Menyelesaikan Persamaan Nonlinear Berakar Ganda
This final project discusses a three-step iterative method as a modification of
Newton like method for finding multiple roots of nonlinear equations with
unknown multiplicity m. This iterative method has sixth-order convergence
and for each iteration it requires four evaluation functions. The efficiency
index of the method is 1:5650. Furthermore, the computational test
shows that the discussed method is superior in the number of iterations
needed to get a root.
Keywords: Nonlinear equation, multiple roots, Newton’s method, forward
difference, divided difference, rational linear function, multiplicity, order of
convergence
Tidak tersedia versi lain