Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Optimasi Mppt Pada Sistem Pv Array Dan Boost Converter Berbasis Artificial Neural Network
Penanda Bagikan

CD Skripsi

Optimasi Mppt Pada Sistem Pv Array Dan Boost Converter Berbasis Artificial Neural Network

RADHIANSYAH FIKRI / 2007110627 - Nama Orang;

ABSTRACT
This study demonstrates that the Artificial Neural Network (ANN) algorithm can effectively adapt to varying operating conditions, both under Standard Test Condition (STC) and under dynamic irradiation and temperature scenarios. The simulation was conducted using MATLAB/Simulink, modeling a PV power system comprising a Trina Solar TSM-250PA05A.08 solar panel, a boost converter, and a load.Under STC testing, ANN maintained a stable output voltage of 35.30 V with constant output power of 222.54 W, achieving 88.97% efficiency. The Perturb and Observe (P&O) method maintained a stable output voltage of 34.05 V with constant output power of 207.09 W (82.78% efficiency), while the system without MPPT delivered 33.21 V and 196.95 W (78.77% efficiency). In non-STC testing with varying irradiance and temperature, ANN achieved an average power output of 75.57 W, higher than P&O (67.52 W) and the no-MPPT system (62.58 W). ANN also maintained output voltage stability within 36.60–37.98 V with relatively low voltage ripple. These results indicate that ANN can consistently maintain the operating point near the Maximum Power Point (MPP), minimize power fluctuations, and improve system efficiency. Therefore, ANN is suitable for real-time control implementation to maximize PV system performance under diverse environmental conditions..
Keywords: Artificial Neural Network, MPPT, Boost Converter, PV Array, Simulink, P&O, Energy Efficiency.


Ketersediaan
#
Perpustakaan Universitas Riau 2007110627
2007110627
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2007110627
Penerbit
Pekanbaru : Universitas Riau – F.TEKNIK – Elektro., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2007110627
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
daus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • LAMPIRAN
  • DAFTAR PUSTAKA
  • BAB V PENUTUP
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB III METODOLOGI PENELITIAN
  • BAB II TINJAUAN PUSTAKA
  • BAB I PENDAHULUAN
  • ABSTRAK
  • DAFTAR ISI
  • COVER
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?