Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Analisis Pola Pembelian Konsumen Pada Coffee Shop Terakota Menggunakan Algoritma Fp-Growth
Penanda Bagikan

CD Skripsi

Analisis Pola Pembelian Konsumen Pada Coffee Shop Terakota Menggunakan Algoritma Fp-Growth

Sintia Widia Ningsih / 2103110835 - Nama Orang;

Suboptimal raw material inventory management and imprecise marketing strategies have become major challenges for Coffee Shop Terakota in Indragiri Hulu Regency. This study aims to analyze consumer purchase patterns to provide recommendations for products that are frequently bought together. The results of this analysis are expected to assist management in maintaining optimal raw material stock availability and in developing more effective product bundling strategies. The method used is the FP-Growth algorithm, an efficient data mining technique for discovering product association patterns from large transaction datasets. The data analyzed consisted of 2.599 sales transactions at Coffee Shop Terakota from January to February 2025. The analysis, with a minimum support threshold set at 1% (0.01) and a minimum confidence threshold of 20% (0.2), showed that the product combination of “AMERICANO HOT” and “KOPI BOTOL” has a confidence of 41.5% and a lift of 2.02, while “AMERICANO HOT” and “KOPI TERAKOTA COLD” have a confidence of 34.1% and a lift of 3.96. These patterns indicate a strong association between products that are frequently purchased together. These findings can be used to optimize raw material stock availability and design targeted product bundling strategies.
Keywords: Association Rules, Product Bundling, Data Mining, FP-Growth, Purchasing Patterns


Ketersediaan
#
Perpustakaan Universitas Riau 2103110835
2103110835
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2103110835
Penerbit
Pekanbaru : Universitas Riau FMIPA Sistem Informasi., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2103110835
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?