Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Model Korelasi Empiris Sifat Fisik Dengan Permeabilitas Tanah Menggunakan Artificial Neural Network
Penanda Bagikan

CD Skripsi

Model Korelasi Empiris Sifat Fisik Dengan Permeabilitas Tanah Menggunakan Artificial Neural Network

Natasha Amanda / 1707113922 - Nama Orang;

Permeability coefficient is one of the significant parameters in the calculation of
seepage. Permeability also has a relationship with the physical properties of the
soil. Permeability can be calculated and predicted in various ways. In this era, the
use of artificial intelligence that is able to imitate the human nervous system has
begun to be widely used in the geotechnical field, one of which is using an Artificial
Neural Network which has the advantage of being able to model complex
relationships. In modeling an ANN model, there are several stages which is
training, testing, and simulation. This research will carry out various variations of
the distribution of the amount of data for training and testing to determine which
variation gives the best results. In this study, will conduct a model empirical
correlation of physical properties with soil permeability using ANN with
Backpropagation algorithm. With a total of 80 data, this data will be used in the
testing and training process with variations of 50:50, 60:40, 70:30, and 80:20. The
inputs used in this research are LL, PL, %sand, %fines, %silt, and %clay. In this
study, it was conclude that the variation that produces the best performing network
is the 50:50 variation with the network model using the backpropagation method,
the traingdx training function, the purelin activation function, using 1 hidden layer,
with the number of neurons in the hidden layer as many as 40, learning rate 0.001,
and epochs amount to 1000 and this network obtain R of 0.99509 and MSE of
7.28E-13.
Keywords: Permeability, soil physical properties, Artificial Neural Network,
Backpropagation


Ketersediaan
#
Perpustakaan Universitas Riau 1707113922
1707113922
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1707113922
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Mesin., 2022
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1707113922
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK SIPIL
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB III METODE PENELITIAN
  • BAB II TINJAUAN PUSTAKA
  • BAB I PENDAHULUAN
  • ABSTRAK
  • DAFTAR ISI
  • COVER
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?