Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Prediksi Kebutuhan Listrik Pelanggan Di Kota Duri Menggunakan Backpropagation Pada Metode Artificial Neural Network
Penanda Bagikan

CD Skripsi

Prediksi Kebutuhan Listrik Pelanggan Di Kota Duri Menggunakan Backpropagation Pada Metode Artificial Neural Network

Nia Ivanka / 2103110837 - Nama Orang;

Electricity demand continues to increase every year, necessitating a reliable prediction system to support effective energy planning and management. This study aims to predict customer electricity demand, particularly in the residential sector in Duri City, using the Artificial Neural Network (ANN) method with the Backpropagation algorithm, and to determine the accuracy of this method in predicting customer electricity demand. The data used consists of historical electricity consumption data from residential customers in Duri City and the average temperature of Riau Province over the past 60 months. In this study, the dataset was divided into 90% for training data and 10% for testing data. The ANN model was designed using several parameters such as the number of hidden layer neurons (32), learning rate (0.0001), and number of epochs (50) to obtain the best prediction results. The model's performance was evaluated using the Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) metrics. The results showed that the RMSE value (0.0524) fell into the good accuracy category, and the MAPE percentage (5.60%) fell into the very good accuracy category. It can be concluded that the model successfully predicted electricity demand for customers in Duri City.

Keywords : Artificial Neural Network, Backpropagation, Duri City, Electricity
Demand Prediction, Residential Sector


Ketersediaan
#
Perpustakaan Universitas Riau 2103110837
2103110837
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2103110837
Penerbit
Pekanbaru : Universitas Riau FMIPA Sistem Informasi., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2103110837
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?