Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Sistem Pendeteksi Bola Dan Gawang Dengan Algoritma Convolutional Neural Network Pada Robot Krsbi Menggunakan Kamera Omnidirectional
Penanda Bagikan

CD Skripsi

Sistem Pendeteksi Bola Dan Gawang Dengan Algoritma Convolutional Neural Network Pada Robot Krsbi Menggunakan Kamera Omnidirectional

T. MOHD. FARHAN / 2007113753 - Nama Orang;

ABSTRACT
Kontes Robot Sepak Bola Indonesia-Beroda is a competition held to enhance students's knowledge and creativity in robotics. Competing robots must be able to dribble the ball and score goals autonomously. The HSV color filtering method is commonly used for object detection; however, it has limitations in handling variations in lighting intensity. This study proposes the implementation of a Convolutional Neural Network (CNN) algorithm based on You Only Look Once (YOLO) to improve the accuracy and stability of ball and goal detection using an omnidirectional camera. By using a dataset of 1,125 images of balls and goals, divided into 80% for training and 20% for validation, a model was obtained with an accuracy of 93.8% and an F1-Score reaching 1.00 at a confidence level of 0.883. Furthermore, after conducting detection tests to compare the performance of YOLO with HSV, the ball detection accuracy using HSV was found to be 28% in the morning, 64% in the afternoon, and 71% at night. In contrast, YOLO achieved an accuracy of 85% in the morning, 92% in the afternoon, and 100% at night. For goal detection, HSV achieved 50% accuracy in the afternoon and 66% at night, while the YOLO model successfully reached 100% accuracy under all lighting conditions.
Keywords : KRSBI-Beroda, YOLO, HSV, ball detection, goalpost detection, omnidirectiolan camera


Ketersediaan
#
Perpustakaan Universitas Riau 2007113753
2007113753
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2007113753
Penerbit
Pekanbaru : Universitas Riau – F.TEKNIK – INFORMATIKA., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2007113753
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK INFORMATIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
daus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II LANDASAN TEORI
  • BAB III METODOLOGI PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?