Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Identifikasi Tandan Buah Segar Kelapa Sawit Berdasarkan Varietas Dura Dan Tenera Menggunakan Pencitraan Komputer Dan Deep Learning
Penanda Bagikan

CD Skripsi

Identifikasi Tandan Buah Segar Kelapa Sawit Berdasarkan Varietas Dura Dan Tenera Menggunakan Pencitraan Komputer Dan Deep Learning

Mita Virdina / 2103111460 - Nama Orang;

Oil palm is a primary commodity in Indonesia’s plantation industry, with the production of fresh fruit bunches (FFB) increasing annually. However, the process of identifying FFB varieties such as Dura and Tenera is still performed manually using axes in a destructive manner, which is inefficient and damages the surface of the fruit. Non-destructive imaging methods have emerged to address this issue. This study aims to develop a system for identifying oil palm FFB varieties using computer vision and the YOLOv8 algorithm to distinguish between Dura and Tenera varieties. A total of 40 FFB samples were used, categorized based on two ripeness levels. The system was developed through image acquisition using an RGB camera and a conveyor integrated with a laptop. Dataset preparation began with annotation and image segmentation using Roboflow software, followed by data augmentation. Model training and testing, along with RGB intensity analysis of the FFB, were conducted using the YOLO object detection algorithm in Python. The model was trained on 1,200 augmented images derived from the 40 samples. The results showed a precision of 0.97 and a recall of 0.955. Model detection accuracy validation using a confusion matrix achieved a [email protected] of 0.91. RGB analysis indicated that unripe fruits have lower intensity compared to ripe ones. This system demonstrates strong potential for real-time FFB sorting in the palm oil processing industry.
Keywords: Computer Vision, Oil Palm Fresh Fruit Bunch, Dura and Tenera variety, ripenes level, YOLOv8 algorithm


Ketersediaan
#
Perpustakaan Universitas Riau 2103111460
2103111460
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2103111460
Penerbit
Pekanbaru : Universitas Riau FMIPA Fisika., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2103111460
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
FISIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
ERA
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL PENELITIAN DAN PEMBAHASAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?