Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Identifikasi Tandan Buah Segar Kelapa Sawit Varietas Dura Dan Tenera Menggunakan Sensor Ultrasonik Dan Jaringan Syaraf Tiruan (Jst)
Penanda Bagikan

CD Skripsi

Identifikasi Tandan Buah Segar Kelapa Sawit Varietas Dura Dan Tenera Menggunakan Sensor Ultrasonik Dan Jaringan Syaraf Tiruan (Jst)

Ola Noviza / 2103110734 - Nama Orang;

Oil palm is a major commodity in Indonesia’s plantation industry. However, the identification process of fresh fruit bunch (FFB) varieties such as Dura and Tenera is still carried out manually and destructively, making it inefficient and tiring. This research aims to develop a non-destructive identification system based on ultrasonic sensors and Artificial Neural Networks (ANN) to distinguish between Dura and Tenera varieties based on output voltage responses. The samples consisted of 40 FFBs classified by ripeness level, and their output voltages were measured using the LV-MaxSonar-EZ MB1010 ultrasonic sensor. The voltage data were used as input for an ANN with a backpropagation algorithm, implemented using Python programming language. The results showed that the voltage values for ripe Dura ranged from 10–14 mV, unripe Dura from 16–20 mV, ripe Tenera from 30–33 mV, and unripe Tenera from 34–38 mV. The ANN architecture consisted of one input layer, two hidden layers, and one output layer, which were used to classify each variety. The accuracy graph increased from epoch 5 to epoch 20, increasing from approximately 0.5 to 1.0. Meanwhile, the loss graph showed a consistent decrease in loss values from the beginning until around epoch 50, from approximately 0.7 to near 0. Using a confusion matrix, the model achieved a prediction accuracy of 100%.

Keywords: Sorting and Grading, Oil Palm Fresh Fruit Bunch, Dura and Tenera Variety, Ultrasonic Sensor, Artificial Neural Network


Ketersediaan
#
Perpustakaan Universitas Riau 2103110734
2103110734
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2103110734
Penerbit
Pekanbaru : Universitas Riau FMIPA Fisika., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2103110734
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
FISIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN
  • DAFTAR PUSTAKA
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?