Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Indoor Localization Menggunakan Metode K-Nearest Neighbor (Knn) Dengan Teknologi Lora Berbasis Internet Of Things (Iot)
Penanda Bagikan

CD Skripsi

Indoor Localization Menggunakan Metode K-Nearest Neighbor (Knn) Dengan Teknologi Lora Berbasis Internet Of Things (Iot)

ICHWAN ZAKKY / 1707122660 - Nama Orang;

ABSTRACT
The development of navigation technology in the world has been very advanced, everyone will find it easier to find a position and find out objects, before navigation technology or called the Global Positioning System (GPS) everyone could only use the help of a compass, maps and natural properties to find out the position and objects by relying on the cardinal directions. The Global Positioning System (GPS) method cannot be declared as a perfect tool because this tool still has shortcomings when in a building, the level of accuracy and precision of Global Positioning System (GPS) technology will decrease and do not work optimally when the user located right in a building. Therefore we need another positioning system that is more accurate to be used as navigation in the room. The technology is called the Internet Of Things (IoT)-based indoor localization concept that utilizes LoRa devices using the fingerprinting method to measure signal strength and generates a dataset in the form of RSSI which will be tested using the K-Nearest Neighbor method with a python-based application program in predicting clusters which produces information in the form of an accuracy of approx. 100% on 4 clusters and 94,70% on 8 clusters.
Keywords: Indoor Localization, KNN, LoRa SX1276, Internet Of Things, Finggerprint.


Ketersediaan
#
Perpustakaan Universitas Riau 1707122660
1707122660
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1707122660
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Informatika., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1707122660
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?