Digilib Perpustakaan Universitas Riau

  • Главная
  • Информация
  • News
  • Help
  • Librarian
  • Выбрать язык :
    Арабский Бенгальский Португальский (Бразилия) Английский Испанский Немецкий Индонезийский Japanese Малайский Persian Русский Тайский Turkish Urdu

Search by :

Все Автор Тема ISBN/ISSN Расширенный поиск

Last search:

{{tmpObj[k].text}}
Image of Rancang Bangun Prototype Pemilah Brondolan Kelapa Sawit Otomatis Berbasis Kamera Dan Arduino Uno
Bookmark Share

CD Skripsi

Rancang Bangun Prototype Pemilah Brondolan Kelapa Sawit Otomatis Berbasis Kamera Dan Arduino Uno

Dormauli Simanjuntak / 2103113903 - Персональное имя;

The development of digital technology has driven a major transformation in the manufacturing industry. This study designed and built a prototype of an automatic loosed fruits sorter based on a camera and Arduino Uno. The system consists of two main components that are integrated with each other, namely the detection system and the automation system. The detection system includes the preparation of tools and materials, data acquisition and annotation to build a dataset, the development of a YOLO detection model, and model training and testing. The dataset consists of three classes of palm kernel: fresh, rotten, and dry. The model uses the YOLOv8-s algorithm, which was trained and tested to detect these three classes using Google Colab. Model performance evaluation was conducted using a confusion matrix to measure accuracy, precision, recall, and F1-Score. The results showed that for the fresh class, precision reached 97.5%, recall 100%, and F1-score 98.7%. For the rotten and dry classes, precision, recall, and F1-score each reached 100%. The overall accuracy of the detection system was 100% with a mean Average Precision (mAP) value of 99.5%. The automation system was designed using Arduino Uno and MG996R servo motors to move a plywood arm as an automatic separator. The YOLOv8-s model is integrated in real-time with the automation system. Test results show that the sorting accuracy for the fresh class is 88%, rotten 70%, and dry 74%. These results indicate that the prototype can be used to separate loose fruit based on these three class categories.

Keywords : Machine Vision, Oil Palm Fruit, YOLO Algorithm Arduino Uno, Classification.


Доступность
#
Perpustakaan Universitas Riau 2103113903
2103113903
Доступно
Detail Information
Название серии
-
Номер вызова
2103113903
Издатель
Pekanbaru : Universitas Riau FMIPA Fisika., 2025
Сопоставление
-
Язык
Indonesia
ISBN/ISSN
-
Классификация
2103113903
Content Type
-
Media Type
-
Carrier Type
-
Редакция
-
Тема(ы)
FISIKA
Специфические детали информации
-
Заявление об ответственности
Mutia
Other version/related

No other version available

Файл приложения
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Comments

You must be logged in to post a comment

Digilib Perpustakaan Universitas Riau
  • Информация
  • Services
  • Librarian
  • Область читателей

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Поиск

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2025 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Язык
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Расширенный поиск
Where do you want to share?