Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of KONTRUKSI DERIVASI PADA PSEUDO BE-ALJABAR
Penanda Bagikan

CD Tesis

KONTRUKSI DERIVASI PADA PSEUDO BE-ALJABAR

NESSY INDRYANTIKA / 2210247917 - Nama Orang;

ABSTRACT
NESSY INDRYANTIKA. 2210247917, Construction of Derivation in
Pseudo BE-Algebra, supervised by Sri Gemawati and Kartini.
A BE-algebra is a non-empty set B with a binary operation ∗ and a constant
1, usually denoted by (B; ∗; 1), which satis es the following axioms: (BE1)
a ∗ a = 1, (BE2) a ∗ 1 = 1, (BE3) 1 ∗ a = a, and (BE4) a ∗ (b ∗ c) = b ∗ (a ∗ c)
for all a; b; c ∈ B. A generalization of BE-algebra, the concept of a pseudo BE-
algebra is introduced. A pseudo BE-algebra is an algebra (E; ∗; ◦; 1) satisfying
the following axioms: (pBE1) a ∗ a = 1 and a ◦ a = 1, (pBE2) a ∗ 1 = 1
and a ◦ 1 = 1, (pBE3) 1 ∗ a = a and 1 ◦ a = a, (pBE4) a ∗ (b ◦ c) = b ◦
(a ∗ c), and (pBE5) a ∗ b = 1 ⇐⇒ a ◦ b = 1 for all a; b; c ∈ E. In a
BE-algebra (B; ∗; 1), a mapping  : B → B is called a derivation in B if it
satis es (x ∗ y) = (x ∗ (y)) ∨ (d(x) ∗ y), where x ∨ y = (y ∗ x) ∗ x for all
x; y ∈ B. A mapping  : B → B is called an f-derivation in B if it satis es
f (x ∗ y) = (f(x) ∗ f (y)) ∨ (f (x) ∗ f(y)), where f is an endomorphism of
E. In this thesis, the concepts of derivation and f-derivation in a BE-algebra
are applied to pseudo BE-algebra, resulting in de nitions and properties. The
construction of these concepts begins by de ning the operations ⊖ and ⊕, which
relate the binary operations ∗ and ◦ in pseudo BE-algebra, yielding two types
of derivations called type 1 and type 2 derivations. The obtained properties
include the existence of type 1 and type 2 derivations in pseudo BE-algebra,
simple formulas for type 1 and type 2 derivations, the relationship between the
binary operations ∗ and ◦ for these two types of derivations, the xed set of
derivations in pseudo BE-algebra, the regularity concept, simple formulas for
f-derivation of an element, the relationship between the endomorphism f and
f-derivation, as well as several properties related to the ≤ relation in pseudo
BE-algebra.
Keywords: BE-algebra, pseudo BE-algebra, derivation, f-derivation, kernel,
xed set


Ketersediaan
#
Perpustakaan Universitas Riau 2210247917
2210247917
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2210247917
Penerbit
Pekanbaru. : Universitas Riau – FKIP – Matematika., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2210247917
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
MAGISTER MATEMATIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
RIDHO
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB 1 PENDAHULUAN
  • BAB 2 TINJAUAN PUSTAKA
  • BAB 3 DERIVASI DI PSEUDO BE-ALJABAR
  • BAB 4 f -DERIVASI DI PSEUDO BE-ALJABAR
  • BAB 5 KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?