Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Algoritma Dbk-Means Clustering Berbasis Feature Engineering Dalam Pembentukan Portofolio Saham Berdasarkan Model Mean-Var
Penanda Bagikan

CD Tesis

Algoritma Dbk-Means Clustering Berbasis Feature Engineering Dalam Pembentukan Portofolio Saham Berdasarkan Model Mean-Var

RATNA TRI AULIA / 2210246886 - Nama Orang;

ABSTRACT
RATNA TRI AULIA NIM. 2210246886, DBK-Means Clustering Algorithm
Based on Feature Engineering in Stock Portfolio Formation Using the
Mean-VaR Model, Supervised by Arisman Adnan dan Ihda Hasbiyati.
Stock investment offers high profit potential but also involves unavoidable
risks, thus requiring appropriate strategies to determine the right combination of
investment assets. The DBK-Means clustering algorithm based on feature engineering
serves as a promising alternative for stock selection, combined with the
Mean-Value at Risk (Mean-VaR) approach to construct an optimal portfolio that
balances return and risk. This algorithm is applied to group stocks included in the
LQ45 index, which consists of the most liquid and best-performing stocks on the
Indonesia Stock Exchange. The data used consist of daily closing prices of LQ45
stocks from the 2020–2024 period, taking into account market dynamics between
the pandemic and post-pandemic periods through the Independent Sample t-test.
The feature engineering process involves constructing three key indicators volatility,
liquidity, and market capitalization, which are then normalized before the
clustering process. This study aims to determine the number of clusters formed,
identify investment-worthy stocks, and calculate the allocation weights and risk
levels of the optimal portfolio. The results show that seven clusters were formed
with good grouping structure, as reflected by a Silhouette Coefficient (SC) of
0.7322. From each cluster, the stock with the highest expected return was selected
namely ASII, BMRI, BBCA, ICBP, PTBA, INCO, and KLBF, which were
then used for portfolio construction. Further analysis indicates that this portfolio
is capable of producing optimal asset combinations within a risk tolerance range
of 1.5 ≤ τ ≤ 4.2 without employing a short-selling strategy. All analyses were
performed using RStudio version 4.4.2. The use of the DBK-Means clustering
algorithm and the Mean-VaR approach has proven effective in filtering potential
stocks and constructing a well-balanced portfolio in terms of return and risk.
Keywords: DBK-Means Clustering, Feature engineering, Mean-VaR, Silhouette
coefficient


Ketersediaan
#
Perpustakaan Universitas Riau 2210246886
2210246886
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2210246886
Penerbit
Pekanbaru. : Universitas Riau – PASCA– Magister Matematika., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2210246886
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
MAGISTER MATEMATIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
RIDHO
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB 1 PENDAHULUAN
  • BAB 2 TINJAUAN PUSTAKA
  • BAB 3 EKSPLORASI DATA SAHAM LQ45
  • BAB 4 IMPLEMENTASI ALGORITMA DBK-MEANS CLUSTERING DAN OPTIMISASI PORTOFOLIO SAHAM BERDASARKAN MODEL MEAN-VAR
  • BAB 5 KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?