Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Peramalan Curah Hujan Bulanan Dengan Tipe Iklim Berdasarkan Klasifikasi Iklim Koppen Dengan Metode Prophet Dan Nnetar
Penanda Bagikan

CD Skripsi

Peramalan Curah Hujan Bulanan Dengan Tipe Iklim Berdasarkan Klasifikasi Iklim Koppen Dengan Metode Prophet Dan Nnetar

Reffi Zuliandra Putra / 2103113387 - Nama Orang;

A time series is defined as a collection of quantitative observations arranged chronologically. Proper understanding of time series is a major problem in various fields. Currently, models have been developed that are quite good for making predictions. Among them are prophet and Neural Network Autoregressive (NNETAR). Prophet is a time series model developed by Sean J. Taylor and Benjamin Letham who are a data science team from Facebook in 2017. The basis of this model is a decomposable time series with 3 model components, namely trend, seasonality, and vacation. Meanwhile, Autoregressive Neural Network or usually abbreviated as NNETAR is a time series model based on machine learning, namely using an Artificial Neural Network (ANN) with input lag in time series data. This research aims to see the performance of the prophet and NNETAR models in rainfall prediction data. The results of this study show that the prophet model is better able to predict seasonal patterns of rainfall than the NNETAR model. Where the average MASE of the prophet model is 0.68 while the NNETAR model has an average MASE of 0.87.
Keywords: Neural network auto regressive (NNETAR), prophet, time series


Ketersediaan
#
Perpustakaan Universitas Riau 2103113387
2103113387
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2103113387
Penerbit
Pekanbaru : Universitas Riau FMIPA Statistika., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2103113387
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
STATISTIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB 1 PENDAHULUAN
  • BAB 2 IKLIM DAN CUACA, PROPHET DAN NNETAR
  • BAB 3 METODOLOGI PENELITIAN
  • BAB 4 PERAMALAN CURAH HUJAN BULANAN DI BEBERAPA KOTA DI DUNIA DENGAN METODE PROPHET DAN NNETAR
  • BAB 5 KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?