Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Deteksi Tandan Buah Kelapa Sawit Normal Dan Cacat Bertumpuk Menggunakan Computer Vision Berbasis Deep Learning
Penanda Bagikan

CD Skripsi

Deteksi Tandan Buah Kelapa Sawit Normal Dan Cacat Bertumpuk Menggunakan Computer Vision Berbasis Deep Learning

Yohana Christia Navili / 2103111643 - Nama Orang;

The manual classification process of fresh fruit bunches (FFB) in oil palm has limitations, particularly with stacked objects, due to subjective assessment and low efficiency. This research develops an automated system based on computer vision using the YOLOv8 algorithm to detect and classify normal and defective FFB (empty bunches, rotten, long stalks, and long thorns) stacked on a conveyor. Additionally, average RGB intensity analysis is performed to differentiate the visual characteristics between normal and defective FFB. Image acquisition is conducted using an RGB camera, while the system modeling utilizes two algorithm variants, YOLOv8l-Seg and YOLOv8x-Seg, capable of real-time detection. A total of 50 FFB samples are used, consisting of five classes. The results indicate that the computer vision-based system effectively detects normal and defective FFB under stacked conditions. Both algorithms produce outputs in the form of bounding boxes, object segmentation, class labels, and confidence scores in real-time. The RGB intensity analysis shows that the average RGB values for the empty bunch class are higher, with values R: 82.9, G: 84.5, B: 82.8, compared to the normal class values R: 75.2, G: 50.7, B: 42.2, long stalks R: 63.5, G: 44.0, B: 38.3, long thorns R: 70.9, G: 53.6, B: 46.0, and rotten R: 79.0, G: 79.8, B: 77.7.

Keywords: Computer Vision, Deep Learning, RGB Intensity, Sorting and Grading, Stacked Oil Palm Fresh Fruit Bunches, Normal and Defective, YOLOv8 Algorithm.


Ketersediaan
#
Perpustakaan Universitas Riau 2103111643
2103111643
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2103111643
Penerbit
Pekanbaru : Universitas Riau FMIPA Fisika., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2103111643
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
FISIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
ERA
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL PENELITIAN DAN PEMBAHASAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?