ABSTRACT This nal project discusses the direct product of GK-algebras and it's proper- ties. This nal project is to show that the direct product of two GK-algebras is also a GK-algebra. Then by applying the concept of direct product GK-algebras a so that generalization of direct product is obtained on homomorphisms, iso- morphisms, dan kernel GK-algebras. Keywords: GK-algebras, homomorp…
ABSTRACT This final project discusses how to determine the point of reordering on the EOQ model where there are defective goods. Inspection is carried out to distinguish defective goods from good goods. How to determine the reorder point, which is the average demand multiplied by a known and constant waiting time. Making an order before the inspection time is over, an order is made before …
ABSTRACT This nal project discusses some identities for sum of reciprocal generalized Fibonacci numbers (Gn) with n = k for a positive integer k as well sum of reciprocal generalized Fibonacci numbers (Gn) with n = 2k + 1 or n is positive odd integer and n = 2k or n is positive even integer for a positive integer k. Then by applying the oor function to the sum of reciprocal discussed, a…
ABSTRACT This final project discusses the annual premium on joint life and last survivor endowment life insurance for two insurance participants aged who are x and y years old by using Clayton copula. The solution of this problem is obtained by determining the term initial life annuity temporary and single premium for each status, then the annual premium formula is obtained based on the Cl…
ABSTRACT This final project discusses the simplex method is modified in the case of cubic programming minimization. Cubic programming is an optimization problem with a nonlinear function and linear constraint function. The technique used for solving cubic programming is to determine the value of the objective function z using the simplex method which has been modified based on the basic de…
ABSTRACT This final project discusses the EOQ model with price decreases. When suppliers decrease the selling price per item in the regular sales period, the optimal order quantity increases and gets optimal cost benefits. Furthermore, the method used in this inventory model is the algebraic method. Using algebraic methods where optimal custom order quantities and optimal cost benefits ar…
ABSTRACT This final project discusses the solution of transshipment problem using the simplex method of transportation. This discussion aims to determine the optimal solution of the transshipment problem by taking into account the freight cost coefficient. The initial process of solving this problem by illustrating how to change the form of fuzzy numbers into strict number forms using the …
ABSTRACT This final project discusses proposes a fuzzy Pythagoras approach with the zero point method for solving transportation problems with uncertain data. The approach combines fuzzy logic and the Pythagorean theorem to optimize resource allocation in transportation systems. The zero point method is utilized to find optimal solutions by considering the membership levels in fuzzy sets. …
ABSTRACT This nal project discusses the solution of multi-objective linear interval pro- gramming with exible fuzzy constraints using a two-phase approach. The objective function is in the form of interval. The solution to this problem is to converting the multi-objective function into a single objective function using the weighting method, then the interval number in the objective func…
ABSTRACT This nal project discusses the solution of the transshipment problem of trapezoidal fuzzy numbers using the max-min method. This method is used to nd the initial basis solution, then to test the optimality and nd the optimal solution using the transportation simplex method. The solutions obtained are compared with the Vogel approximation method. Based on the comparison of the …
ABSTRACT This thesis discusses several developments of mixtilinear incircle on the diagonal of a cyclic quadrilateral. The development carried out is to show the various relationships that are formed between the radii mixtilinear incircle which can be constructed on the diagonal of the cyclic quadrilateral. At any △ABC one can construct three different mixtilinear incircle respectively. …
ABSTRACT This final project discusses the modification of Halley method based on Steffensen method by estimating first and second derivative using central difference. The method is called Halley Steffensen-Type method (MHS), which is the method is free from derivative. The convergence analysis shows that the MHS is of four order method. Numerical comparison between MHS and several of the …
ABSTRACT This final project discusses a modification of Laplace variational iteration method to solve a fourth-order parabolic partial differential equations with variable coefficient. Modification is made by coupling of three methods. The application process begins by converting the equation to be solved by forming a correction functions, Laplace transform, and transform correction functi…
ABSTRACT This final project discusses the premium of whole life insurance unit link by using point to point method as an indexing method to calculate the value of the investment based on the value of the benefits. To solving the problem is obtained by determining the volatility of the stock price and the value of the benefits by the investment return, then the premium formula is obtained b…
This final project discusses the Canadian reserves of semicontinuous endowment life insurance using Rayleigh distribution. The Canadian reserves are calculated by an expanded modification premium for the whole period of premium payment. The Canadian reserves calculation is solved by determination of the value of annuity, single premium and annual premiums using Rayleigh distribution. Keywords:…
This research aims to produce computer-based learning media with valid and practical data presentation materials for use by first grade junior high school students to facilitate mathematical problem solving skills. The development model used is the Borg and Gall development model modified by Sugiyono. Make a needs analysis from the results of observations and interviews with mathematics teacher…
ABSTRACT This final project discusses the solution of multi-objective linear programming of trapezoidal fuzzy numbers using the weighting method. The coefficient of the amount material production and the coefficient of the amount material available are in the form of fuzzy numbers because of uncertainty. The solution of this problem is to convert the trapezoidal fuzzy numbers on the coeffi…
The purpose of this research is to develop learning devices such as syllabuses, lesson plans, and worksheets based on experiential learning circle topics to facilitate the ability of eighth-grade SMP/MTs to see valid and practical mathematical connections. This study employs the ADDIE development model's analysis, design, development, implementation, and evaluation phases. The investigatio…
ABSTRACT This final project discusses the divisibility test for Gaussian integers a+bi and Eisenstein integers a+bρ with a and b integers. That is solved by the properties of division, conjugate and norm of Gaussian integers and Eisenstein integers. The properties used aim to obtain the quotient which is a Gaussian integer and an Eisenstein integer. This final project is an extension an a…
ABSTRACT This nal project presents a new sequence called the Trilucas sequence. The discovery of the Trilucas sequence is based on using the same recursive formula as the Tribonacci sequence with the rst 3 terms of the Trilucas sequence taken from the rst 3 terms of the Lucas sequence. Based on Trilucas sequence, the Binet formula is found, the properties that are proven using the stron…