Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Klasifikasi Sampah Plastik Menggunakan Pencitraan Hiperspektral
Penanda Bagikan

CD Skripsi

Klasifikasi Sampah Plastik Menggunakan Pencitraan Hiperspektral

Muhammad Wahyu Kusnaidi / 1903110309 - Nama Orang;

Plastic waste is a global problem in everyday life that still requires further processing to overcome it. The plastic waste sorting system in Indonesia is still done manually using experience personnel to separate plastic wastes based on type. This research aims to classify plastic waste according to type using hyperspectral imaging method. There were three types of plastic waste samples used, High-Density Polyethylene (HDPE), Polyethylene Terephthalate (PET), and Polypropylene (PP) with 20 samples for each type. The hyperspectral imaging system has advantages for classifying plastic waste because the wavelength spectrum used is from 400 nm – 1000 nm. Image processing was done using Matlab to obtain reflectance intensity for each samples. Principal Component Analysis (PCA) and K-Mean Clustering are used to classify each type of plastic waste. The PCA method uses two variables to analyze hyperspectral images, namely PC1 and PC2. The results showed significant differences in the reflectance intensity of hyperspectral images, especially at the wavelength of 870 nm, which increased in the three plastic waste samples. HDPE plastic has the highest reflectance intensity because it contains colored and thick samples. The PCA results have a cumulative percentage of 98,71%. Meanwhile, the k-mean clustering of three plastic wastes obtained an accuracy of 70.29%. Based on the pattern formed in the scatter plot of the two analyses, where there is a grouping of data for each type plastic waste samples, it is shown that hyperspectral imaging has potential to classify the plastic wastes.
Keywords : Hyperspectral Imaging, Plastic Waste, K-Mean Clustering, Principal Component Analysis (PCA), Reflectance Intensity


Ketersediaan
#
Perpustakaan Universitas Riau 1903110309
1903110309
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1903110309
Penerbit
Pekanbaru : Universitas Riau FMIPA Fisika., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1903110309
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
FISIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • ABSTRAK
  • DAFTAR ISI
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?