Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of KLASIFIKASI KUALITAS PERMUKAAN JALAN RAYA
MENGGUNAKAN METODE CNN BERBASIS ARSITEKTUR
XCEPTION
Penanda Bagikan

CD Skripsi

KLASIFIKASI KUALITAS PERMUKAAN JALAN RAYA MENGGUNAKAN METODE CNN BERBASIS ARSITEKTUR XCEPTION

RIDOL LIUSMAN GAHO / 1907155927 - Nama Orang;

Highways are the main infrastructure for land transportation. The better the
condition of a highway, the better the speed and safety for drivers. One of the main
causes of accidents on highways is due to the road conditions being unsuitable for
use because of damage. Therefore, monitoring and maintaining the surface
condition of roads is very important. The quality check of highways is generally
done manually, a method that requires significant time and effort. The vast number
of roads and the manual checks that consume a lot of time and money become
obstacles in road maintenance. Therefore, the system "Highway Surface Quality
Classification Using CNN Method Based on Xception Architecture" was developed
as an alternative to perform surface quality checks on highways. This method uses
deep learning CNN with Xception transfer learning architecture. Xception was
chosen because it has a complex yet efficient architecture in terms of time usage
and high accuracy for image classification, producing accurate models with short
training times. Furthermore, several previous studies have shown that Xception
outperforms several other architectures. The use of deep learning in classifying
highway surface damage is expected to speed up and simplify the process of
monitoring road surface conditions. The model is created using a dataset with 4
classes based on the level of damage released by the Ministry of Public Works and
Public Housing (PUPR). The highest test results showed a model accuracy of
90.11% and 90% for validation.
Keywords - Road, Damaged, Xception


Ketersediaan
#
Perpustakaan Universitas Riau 1907155927
1907155927
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1907155927
Penerbit
Pekanbaru : Universitas Riau - F. Teknik - Teknik Elektro., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1907155927
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
GUNTUR
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODOLOGI PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?