Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Identifikasi Tandan Buah Sawit Berisi Dan Kosong Setelah Proses Perontokan  Berbasis Computer Vision Dan  Algoritma Yolo Untuk  Estimasi Oil Losses
Penanda Bagikan

CD Skripsi

Identifikasi Tandan Buah Sawit Berisi Dan Kosong Setelah Proses Perontokan Berbasis Computer Vision Dan Algoritma Yolo Untuk Estimasi Oil Losses

Muhammad Ichsanudin / 2003114223 - Nama Orang;

The identification of full and empty palm fruit bunches after threshing plays an important role in improving the oil extraction rate (OER) in palm oil mills. Undetected filled palm fruit bunches after threshing can reduce extraction efficiency and lead to oil loss cases. Manual assessment is often slow and inaccurate, so a faster and more effective technology is needed. This study uses computer imaging and the YOLO (You Only Look Once) algorithm to identify filled and empty palm fruit bunches. In this study, two versions of the YOLO algorithm, namely YOLOv8l and YOLOv8-Seg, were applied to a dataset of 526 FFB images, divided into 263 filled and 263 empty bunch samples. The YOLO model was tested using videos of conveyor lines in the mill and the model performance was evaluated using confusion matrix. The model evaluation results show that YOLOv8l has a detection accuracy of 83.8% with a detection speed of 8.5 ms, which is higher and faster than YOLOv8-Seg which reaches 82.8% with a detection speed of 9.6 ms. These results show that the accuracy and detection speed obtained are effective for identifying palm fruit bunches. The results also show that the intensity of the RGB values of the filled bunches is higher than that of the empty bunches.
Keywords: Computer Vision; Palm oil fruits; Unstripped bunches; YOLOv8; RGB intensity 


Ketersediaan
#
Perpustakaan Universitas Riau 2003114223
2003114223
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2003114223
Penerbit
Pekanbaru : Universitas Riau FMIPA Fisika., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2003114223
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
FISIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?