Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Klasifikasi Jenis Jerawat Berbasis Cnn Menggunakan Inception-V3 Transfer Learning Untuk Merekomendasikan Jenis Perawatannya
Penanda Bagikan

CD Skripsi

Klasifikasi Jenis Jerawat Berbasis Cnn Menggunakan Inception-V3 Transfer Learning Untuk Merekomendasikan Jenis Perawatannya

Satria Julhendra / 2107112730 - Nama Orang;

ABSTRACT
Acne is a global skin problem with high prevalence, and in Indonesia, the increasing trend is significant, exacerbated by limited access to professional diagnosis. Therefore, this research aims to develop an accurate automated acne classification and recommendation system. The method used is a Convolutional Neural Network (CNN) with Inception-V3-based transfer learning for classifying five types of acne (blackheads, whiteheads, papules, pustules, and nodules) based on skin images, along with a rule-based system for treatment recommendations. The results show that the CNN model achieved a training accuracy of 96.98% and a validation accuracy of 89.08%, with an average class accuracy of 95.59%, demonstrating good capability in identifying acne. The integration with the rule-based recommendation system was also successful, with a 100% suitability rate. In conclusion, this system provides a comprehensive solution for acne diagnosis and treatment recommendations and contributes to the development of deep learning methods in medical imaging.
Kata Kunci: Convolutional Neural Network, Inception-V3, acne classification, rule-based recommendation system, transfer learning.


Ketersediaan
#
Perpustakaan Universitas Riau 2107112730
2107112730
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2107112730
Penerbit
Pekanbaru : Universitas Riau – F.TEKNIK – INFORMATIKA., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2107112730
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK INFORMATIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
daus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODOLOGI PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?