Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Implementasi Yolov8 Untuk Mengklasifikasi Kualitas Telur Berdasarkan Warna Dan Tekstur Cangkang Cover
Penanda Bagikan

CD Skripsi

Implementasi Yolov8 Untuk Mengklasifikasi Kualitas Telur Berdasarkan Warna Dan Tekstur Cangkang Cover

Khafizh Khairy / 2007136210 - Nama Orang;

ABSTRACT
Egg quality is a crucial aspect in the food industry, particularly to ensure the safety and quality of products distributed to consumers. Manual egg quality classification often faces challenges such as subjective assessment, time constraints, and inconsistency risks. External factors such as shell color and texture are key indicators in evaluating egg quality. This study develops an egg quality classification system based on Artificial Intelligence (AI) using a Deep Learning approach with the Convolutional Neural Network (CNN) method and the You Only Look Once (YOLOv8) algorithm. The system is designed to classify eggs into three categories: good, fairly good, and poor quality, based on egg shell images. The dataset used is a combination of directly captured images and online sources, totaling 1,417 images, which underwent preprocessing and labeling stages. The training results show that the model can detect egg quality with a precision of 0.95, recall of 0.98, and F1-score of 0.97. The system supports real-time detection using a camera and can assist the poultry industry in automating the egg sorting process quickly and consistently. Future work includes expanding dataset variety and testing newer detection algorithms to improve system accuracy.
Keywords: YOLOv8, Convolutional Neural Network, Pengujian Real-time


Ketersediaan
#
Perpustakaan Universitas Riau 2007136210
2007136210
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2007136210
Penerbit
Pekanbaru : Universitas Riau – F.TEKNIK – INFORMATIKA., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2007136210
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK INFORMATIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
daus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODOLOGI PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2026 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?