Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Implementasi Deep Reinforcement Learning Untuk Pengembangan Agen Dalam Game Dodgeball Menggunakan Unity Ml-Agents
Penanda Bagikan

CD Skripsi

Implementasi Deep Reinforcement Learning Untuk Pengembangan Agen Dalam Game Dodgeball Menggunakan Unity Ml-Agents

Dzaky Fiantino / 2107113404 - Nama Orang;

ABSTRACT
The gaming industry has grown rapidly, and one of the key elements in a game is the non-playable character (NPC). Easily predictable NPC behavior often reduces player engagement and satisfaction. Static or unresponsive NPCs tend to create monotonous and less challenging gameplay experiences, ultimately lowering game quality and player interest. This study applies Deep Reinforcement Learning (DRL) using Unity ML-Agents to train agents in a Dodgeball game, enabling them to make adaptive decisions through self-play. A reward system was designed to provide positive feedback for strategic actions, such as picking up and throwing the ball, and penalties for mistakes, such as hitting walls or being hit by the ball. The training results showed a gradual improvement in agent performance, reflected in the increasing and stable cumulative rewards and ELO scores at the end of training. In performance testing, the DRL agent achieved a 66% win rate against the rule-based agent over 50 matches. A user preference test also revealed that 80% of players preferred competing against the DRL agent, with 60% of them considering it more challenging than the rule-based one. These results demonstrate that the DRL agent not only outperforms the rule-based agent but also provides a more dynamic and realistic gameplay experience.
Keywords: Deep Reinforcement Learning, Dodgeball, Game, Unity ML-Agents, Self-play


Ketersediaan
#
Perpustakaan Universitas Riau 2107113404
2107113404
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2107113404
Penerbit
Pekanbaru : Universitas Riau – F.TEKNIK – INFORMATIKA., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2107113404
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK INFORMATIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
daus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODOLOGI PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2026 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?