Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Pemodelan Jaringan Saraf Tiruan Menggunakan Metode Backpropagation Untuk Prediksi Beban Listrik Di Sumatera Bagian Tengah
Penanda Bagikan

CD Skripsi

Pemodelan Jaringan Saraf Tiruan Menggunakan Metode Backpropagation Untuk Prediksi Beban Listrik Di Sumatera Bagian Tengah

MUHAMMAD MAYANDRE BETHATIAN / 1407123347 - Nama Orang;

ABSTRACT
Electricity loads thrive every time, where the amount of loads affect the availability and supply of electricity every day. The calculation of changes in electrical loads for every 30 minutes in 24 hours, electrical loads could produce various electrical pattern developments at certain times in different days, to understand the changes of the pattern of electricity loads for the future. These pattern could be use for prediction or forecasting method on the daily data of electrical loads using Artificial Neural Network (ANN) with the Backpropagation Method. The prediction is applied to daily electricity loads data for the SUMBAGTENG region (Central Sumatra), data from 2013 are used for training, 2014 are used for model testing, and data from 2015 as comparison of ANN prediction results from 2014 data testing. Optimal model training is obtained by trying each training function and changing various training parameters to get the lowest Mean Square Error (MSE) value. The results of various training ANN models showed that using the traincgp training function at 200 hidden layers and learning rate is 0.01 obtaining a training MSE value is 10025,265. By applying the optimal ANN model on the 2014 electrical loads to predict the 2015 electrical loads, the accuracy of error from the ANN model is obtained by the value of Mean Absolute Percent Error (MAPE) is 5.42%.
Keywords: electricity load, long term electric load forecast, artificial neural network, backpropagation, Mean Absolute Percent Error.


Ketersediaan
#
Perpustakaan Universitas Riau 07 04. 119 (0061)
07 04. 119 (0061)
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
07 04. 119 (0061)
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Informatika., 2019
Deskripsi Fisik
vi, 71 hlm.; ill.; 29 cm
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
07 04. 119 (0061)
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V SIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2026 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?