Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Identifikasi Huruf Hijaiyah Berbasis Glcm Menggunakan Jaringan Syaraf Tiruan Backpropagation
Penanda Bagikan

CD Skripsi

Identifikasi Huruf Hijaiyah Berbasis Glcm Menggunakan Jaringan Syaraf Tiruan Backpropagation

Katya Blinda Putri / 1407113374 - Nama Orang;

ABSTRACT

Hijaiyah Letter or also called the Arabic alphabet can be found in the Holy Book of Islam, the Qur'an. Every Muslim is obliged to read the Qur'an and recognize each of Hijaiyah Letters as its constituent letters in order to read and write in Arabic correctly. Humans are essentially intelligent because they are able to distinguish between one object and another through the object's characteristics or patterns. Certainly it is not difficult to identify a handwriting of Hijaiyah Letters even though written by different people. But it's hard if a machine is trying to identify it. The research aims to establish an Identification System of Hijaiyah Letters based on Gray Level Co-Occurrence Matrix (GLCM) using the Backpropagation Artificial Neural Network to determine system accuracy results and produce sound output in according to how to read it. Image Data of Hijaiyah Letters obtained from hand-written scanning of five different people with total of Hijaiyah Letters as much as 600 data measuring by 300x300 pixels with extension. JPEG for each letter. GLCM-based systems as the extraction of texture features produce values of Energy, Contrast, Homogeneity, Entropy and Correlation, used as input for the training process of Backpropagation Artificial Neural Network. Image Data of Hijaiyah letters used for the training process amounted to 420 letters and 180 letters of testing process. The result of the Hijaiyah Letters Identification System identifies 30 letters from Alif to Ya. The system is able to identify Hijaiyah Letters with an accuracy rate of 96.11% with error 3.89%.

Keywords: Hijaiyah Letters, GLCM, Backpropagation Artificial Neural Network, Matlab R2018a.


Ketersediaan
#
Perpustakaan Universitas Riau 07 04. 119 (0062)
07 04. 119 (0062)
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
07 04. 119 (0062)
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Informatika., 2019
Deskripsi Fisik
vi, 71 hlm.; ill.; 29 cm
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
07 04. 119 (0062)
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2026 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?