Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Klasifikasi Jenis Mangga Berdasarkan Fitur Bentuk Dan Warna Dengan Menggunakan Metode K-Nearest Neighbor
Penanda Bagikan

CD Skripsi

Klasifikasi Jenis Mangga Berdasarkan Fitur Bentuk Dan Warna Dengan Menggunakan Metode K-Nearest Neighbor

AKBAR RIZKI IRNANDA / 1407121206 - Nama Orang;

ABSTRACT

Mango is one of the fruits that popular in Indonesia. Mango has many types so that sometime people can make mistake in predicting the mango type due to similar shape and color, features among types of mango, especially Mango Harum Manis with Mango Indramayu. With an advanced technology such as MangoClassifier, predicting the type of mango can be distinguished automatically by using existing applications and K-Nearest Neighbor Method. This research aims to implement the K-Nearest Neighbor Method to detect mango types then evaluate how much the accuracy of the MangoClassifier Application is, so that it can be compared with the accuracy of other methods. This application is supported by camera equipment, matlab R2013a software, acquisition booth and K-Nearest Neighbor Method, calculates the distance between data with Euclidean distance. The acquisition booth is used to take a picture of mango object so the program will be easily to distinguish between background and object the picture. Data processing is begun with mango picture retrieval and then pre-processing the picture to get features. The used features are four, length and width from cropped object in the picture. Besides it, color and roundness of object are other features that also must be considered. This application detects four types of mango including Mango Harum Manis, Mango Indramayu, Mango Lokmay and Mango Gedong using 200 training data and 120 testing data. Accuracy obtained by this application is 92.5% so that this application is categorized as suitable to be used.

Keywords : K-Nearest Neighbor, Jarak Euclidean, Matlab R2013


Ketersediaan
#
Perpustakaan Universitas Riau 07 04. 119 (0074)
07 04. 119 (0074)
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
07 04. 119 (0074)
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Informatika., 2019
Deskripsi Fisik
xv, 52 hlm.; ill.; 29 cm
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
07 04. 119 (0074)
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2026 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?