Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Poverty Datamining: Analisis Pola Penyebaran Kemiskinan Kabupaten Dan Kota Di Pulau Kalimantan, Sulawesi, Bali Dan Nusa Tenggara
Penanda Bagikan

CD Tesis

Poverty Datamining: Analisis Pola Penyebaran Kemiskinan Kabupaten Dan Kota Di Pulau Kalimantan, Sulawesi, Bali Dan Nusa Tenggara

DERITA LAMTIAR PASARIBU / 1310247698 - Nama Orang;

One of poverty data source available in Indonesia is The Regency/City Poverty Data and Information Catalog, published by the Central Statistics Agency/Badan Pusat Statistik (BPS) which is feasible to be analyzed by various techniques, known as datamining.
This research uses poverty data and information in 175 regencies and cities in Kalimantan, Sulawesi, Bali and Nusa Tenggara with 9 aspects consisting of 42 poverty variables. The research aimed to compare the aspects of poverty established by BPS with the results of the analysis of the research, analyzing the pattern of poverty distribution descriptively based on the cluster and to formulate poverty reduction suggestions that were appropriate for the cluster. Analysis was carried out by factor analysis or Principal Component Analysis (PCA) and cluster analysis (Cluster 3.0).
The poverty data from BPS has 9 aspects/factors and PCA analysis results the same number of main components/factors. The difference of the result of these two observations is seen in variable members in each component that could be occured because BPS conducts grouping of variables before the population data collection get started, while PCA classifies variables based on data that has been collected or after the population data collection was completed.
PCA results can be utilized for further research purposes such as the implementation of evaluation and planning. Meanwhile the BPS poverty aspect displayed in a more structured arrangement, makes it easier to observe for publications and more practical to use when conducting population data collection.
Cluster analysis forms 6 clusters which have similarities in poverty characters of more than 40%. Poverty reduction can be planned by looking at weaknesses in each cluster of health issue, education, employment, poverty factors, housing and government aid instruments, and by developing existing potential.

Keywords: poverty, factor analysis, Kalimantan, Sulawesi, Bali, Nusa Tenggara.


Ketersediaan
#
Perpustakaan Universitas Riau 10 08. 219 (0008)
10 08. 219 (0008)
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
10 08. 219 (0008)
Penerbit
Pekanbaru : Universitas Riau – Pascasarjana – Tesis Agribisnis., 2019
Deskripsi Fisik
xiii, 129 hlm.; ill.; 29 cm
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
10 08. 219 (0008)
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
PASCASARJANA (MAGISTER) AGRIBISNIS
Info Detail Spesifik
-
Pernyataan Tanggungjawab
FATAH
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TELAAH PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL PENELITIAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?